Validation of Mt. Waddington Ice Core Paleoclimate Record

Stable Isotope and Melt Stratigraphy Correlation

Peter Neff
Department of Earth and Space Sciences
University of Washington

Eric Steig and Ed Waddington, faculty advisers
• Ice coring and paleo-temperature
• Project overview
• Sampling methods
• Core isotope and melt data
• Project summary/status
Ice coring and paleo-temperature

- **Question:** What information is stored in annually accumulated layers of snow and ice?
- **Answer:** A lot of things.
 - Carbon dioxide, methane, dust, volcanic horizons….
 And STABLE ISOTOPES

- Isotopic composition of water in snow and ice.
 - This factor depends roughly on air temperature and so can illustrate short-term seasonal variations and long-term average temperature

![Diagram showing annual layers, ice flow, and ice core with thinned layers](image)
Ice coring and paleo-temperature

Oxygen has three stable isotopes: ^{16}O, ^{17}O, and ^{18}O

Combinations important for paleo-temperature:
H_2^{16}O and H_2^{18}O

Lighter oxygen isotope gives H_2^{16}O higher vapor pressure than H_2^{18}O

Evaporation results in vapor with less ^{18}O than the original water source
- Vapor is depleted, or isotopically light

And

Condensation from vapor contains more ^{18}O than the vapor remaining
- Condensate is enriched, or isotopically heavy
Ice coring and paleo-temperature

- As vapor is transported poleward, cooler temperatures result in continued condensation, therefore enriching condensate and depleting vapor.
- If the average temperature at evaporation source and ice coring site changes, $\delta^{18}O$ in core shifts accordingly.

$$\delta^{18}O_{ice} = \frac{\left(\frac{H_2^{18}O}{H_2^{16}O}\right)_{ice} - \left(\frac{H_2^{18}O}{H_2^{16}O}\right)_{Standard}}{\left(\frac{H_2^{18}O}{H_2^{16}O}\right)_{Standard}} \times 1000\% $$
Ice coring and paleo-temperature

GISP2 δ^{18}O

~ 8-$9^\circ C$ change

Present day δ^{18}O $\approx 0.67\%_0$ per $^\circ C$
Project overview

• 65 meter pilot ice core retrieved
 Summer 2006

• Combatant Col, British Columbia, Canada
Project goals

• Investigating site potential for providing high-resolution climate data for Pacific region
 - Snow accumulation data to compare with other ice cores
 - Decadal-scale climate variations
 (Pacific Decadal Oscillation, El Niño-Southern Oscillation)
 - Precipitation variability relation to large-scale atmospheric circulation

• Isotope and melt stratigraphy correlation would indicate annual layer preservation
 - High δ^{18}O (~high temps) with high melt layer concentration
 - Low δ^{18}O (~low temps) with low melt layer concentration
Sampling process
Logging melt stratigraphy

- Seasonal surface melt preserved
- Qualitative melt index
 - Melt magnitude
 0 1 2 3 4 5
- Regular shifts between high and low melt concentration
 - Summer and Winter
- No evidence that melting influences inter-annual stratigraphy
Combining stable isotopes and melt stratigraphy
Combining stable isotopes and melt stratigraphy

- Preliminary age scale dates core base to 1983
Project summary / status

- Ice core analysis demonstrates inter-annual stratigraphy preservation, despite surface melting.
- Independent confirmation from dust peaks at 1986 and 1993 in DRI data, as well as unambiguous annual peaks.
- Site accumulation rate ~2m/year (ice equivalent), ice depth ~200m (confirmed by ice radar September 2007).
- Age of ice stratigraphy at depth likely 200 to 1000 years BP.
• Proposal submitted to retrieve full core to bedrock
• Potential to gain robust datasets for interpretation of climate variation in the Pacific region
Acknowledgements

• Thanks to:
 – Eric Steig, Doug Clark (WWU), Ed Waddington, and Julia Jarvis for their glaciological know-how
 – Dan Gleason for endless laboratory assistance
 – Joe McConnell (DRI) and Erin Pettit

• Western Canadian Cyrospheric Network (WC²N)
 University of Northern British Columbia

Funding:

Canadian Foundation for Climate & Atmospheric Sciences

National Science Foundation